Cytopenia is a well-documented complication in the treatment of hematological malignancies with lenalidomide and pomalidomide. Although prior studies have highlighted direct effects on hematopoietic cells to explain this adverse effect, the involvement of hematopoietic-supportive stroma remains less understood. This study examined the effects of lenalidomide/pomalidomide on the expansion and differentiation of human CD34+ hematopoietic stem/progenitor cells (HSPCs) in vitro, in co-culture with human bone-marrow mesenchymal stromal/stem cells (MSCs). Our findings indicate that lenalidomide/pomalidomide increases the population of immature CD34+CD38− cells while decreasing the number of mature CD34+CD38+ cells, suggesting a mechanism that inhibits early HSPC maturation. This effect persisted across myeloid, megakaryocytic, and erythroid lineages, with MSCs playing a key role in preserving immature progenitors and inhibiting their differentiation. Furthermore, in myeloid differentiation assays augmented by granulocyte-colony stimulating factor, lenalidomide/pomalidomide not only enhanced the presence of CD34+ cells with mature myeloid markers such as CD11b but also reduced the populations lacking CD34 yet positive for these markers, irrespective of MSC presence. Thus, while MSCs support the presence of these immature cell populations, they simultaneously inhibit their maturation. This finding provides novel mechanistic insights into lenalidomide- and pomalidomide-induced cytopenia, and could guide therapeutic strategies for its mitigation.
Read full abstract