AbstractDue to their significant influence on large‐scale atmospheric circulation and climate anomalies, the variability of Arctic sea ice and Eurasian snow cover during late autumn and their combined effects have garnered increasing attention. This study aims to investigate the physical mechanism underlying the covariation among the Barents‐Kara Seas (BKS) sea ice concentration (SIC), Eurasian snow cover extent (SCE) and the ensuing winter Eurasian surface air temperature (SAT). The statistics results of singular value decomposition suggest a significant linkage between the decreased BKS SIC, zonal “negative–positive” dipole SCE anomalies over Eurasia in November and cold Eurasian SAT in January–February (JF). Observational diagnosis analyses about the meridional moisture, heat transport and surface heat flux demonstrate that subpolar Eurasian anticyclonic circulation plays a crucial role in connecting the predominant modes of SIC and SCE. Furthermore, the BKS SIC and Eurasian SCE anomalies can jointly excite upward‐propagating planetary waves into the stratosphere, while simultaneously reducing the subpolar meridional temperature gradient. This results in westerly wind deceleration and favours the continuous planetary wave propagation. Consequently, the stratospheric polar vortex is significantly weakened, along with negative Northern Annular Mode anomalies propagating downward from the stratosphere to troposphere. Negative‐phase Arctic Oscillation anomalies correspondingly develop during JF, resulting in widespread cold anomalies over the Eurasian continent. These results are further confirmed by numerical sensitivity experiments from the Community Atmosphere Model forced by the above mentioned SIC and SCE anomalies. The empirical hindcast model analyses further suggest that the prediction skill of JF Eurasian SAT is enhanced when both the November BKS SIC and Eurasian SCE signals are considered.