Abstract
Arctic hydrological cycle has important global implications through modifying deep ocean circulation via fresh water fluxes. However, attribution of the observed changes in Arctic moisture budget remains challenging due to the lack of reliable observations. Here, as a first step, past changes in hydrological cycle over the Arctic were evaluated using CMIP6 historical simulations. To examine possible influences of individual external forcings, CMIP6 multi-model simulations performed under natural-plus-anthropogenic (ALL), greenhouse gas (GHG), natural (NAT), and aerosol (AER) forcings were compared. Results indicate that Arctic precipitation and evaporation increase in ALL and GHG but decrease in AER. In ALL and GHG, Arctic precipitation increases in summer mainly due to enhanced poleward moisture transport whereas Arctic moistening during winter is affected more by increased surface evaporation over sea-ice retreat areas. In AER, Arctic precipitation tends to decrease due to reduced evaporation over sea-ice advance areas during cold months. Poleward meridional moisture flux (MMF) across 70°N is the strongest in summer due to the highest moisture. GHG has stronger MMF than other forcing simulations due to larger increase in moisture in line with stronger warming. The MMF response is found to be largely determined by variations in transient eddies with distinct seasonal and regional contributions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have