In this study, we examine thermal conductivity and the thermal Hall effect in electron-ion plasmas relevant to hot neutron stars, white dwarfs, and binary neutron star mergers, focusing on densities found in the outer crusts of neutron stars and the interiors of white dwarfs. We consider plasma consisting of single species of ions, which could be either iron [56]Fe or carbon [12]C nuclei. The temperature range explored is from the melting temperature of the solid T∼109 K up to 1011 K. This covers both degenerate and non-degenerate electron regimes. We find that thermal conductivity increases with density and temperature for which we provide analytical scaling relations valid in different regimes. The impact of magnetic fields on thermal conductivity is also analyzed, showing anisotropy in low-density regions and the presence of the thermal Hall effect characterized by the Righi–Leduc coefficient. The transition froma degenerate to non-degenerate regime is characterized by a minimum ratio of thermal conductivity to temperature, which is analogous to the minimum observed already in the case of electrical conductivity. We provide also formulas fit to our numerical results, which can be used in dissipative magneto-hydrodynamics simulations of warm compact stars.
Read full abstract