Globally, the consumption of coastal fish is the predominant source of human exposure to methylmercury, a potent neurotoxicant that poses health risks to humans. However, the relative importance of riverine inputs and atmospheric deposition of mercury into coastal oceans remains uncertain owing to a lack of riverine mercury observations. Here, we present comprehensive seasonal observations of riverine mercury and methylmercury loads, including dissolved and particulate phases, to East Asia's coastal oceans, which supply nearly half of the world's seafood products. We found that East Asia's rivers annually exported 95 ± 29 megagrams of mercury to adjacent seas, 3-fold greater than the corresponding atmospheric deposition. Three rivers alone accounted for 71% of East Asia's riverine mercury exports, namely: Yangtze, Yellow, and Pearl rivers. We further conducted a metadata analysis to discuss the mercury burden on seawater and found that riverine export, combined with atmospheric deposition and terrestrial nutrients, quantitatively elevated the levels of total, methylated, and dissolved gaseous mercury in seawater by an order of magnitude. Our observations support that massive amounts of riverine mercury are exported to coastal oceans on a continental scale, intensifying their spread from coastal seawater to the atmosphere, marine sediments, and open oceans. We suggest that the impact of mercury transport along the land-ocean aquatic continuum should be considered in human exposure risk assessments.
Read full abstract