Abstract

Wild-caught seafood contains significant amounts of mercury. Investigating the mercury accumulation levels in wild-caught seafood and analyzing its migration and transformation are of great value for assessing the health risks of mercury intake and for the tracking of mercury sources. We determined the concentrations and stable mercury isotopic compositions (δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg) of 104 muscle samples collected from 38 species of seafood typically harvested from the Taiwan Shallow Fishing Ground (TSFG), Southern Taiwan Strait. Overall, the concentrations of total mercury (THg) and methylmercury (MeHg) ranged from 11 to 479 ng/g (dry weight, dw) and 10 to 363 ng/g (dw), respectively, and were below the threshold value established by the USEPA and the Chinese government. Demersal and near-benthic species accumulated more mercury than pelagic or mesopelagic species. The characteristics of mercury isotopes in wild-caught marine species differed in terms of vertical and horizontal distribution. Considering the known peripheral land sources of mercury (Δ199Hg ≈ 0), the mercury in seafood from the TSFG (Δ199Hg > 0) did not originate from anthropogenic emissions. The ratio of Δ199Hg and Δ201Hg (1.18 ± 0.03) suggested that the photoreduction of Hg (II) and the photo-degradation of MeHg equally contributed to mass-independent fractionation. Based on the values of Δ199Hg/δ202Hg (1.18 ± 0.03), about 67% of the mercury in seawater had undergone microbial demethylation prior to methylation and entering the seafood. Additionally, the vertical distribution of Δ200Hg in seafood from different water depths implies that mercury input was in part caused by atmospheric deposition. Our results provide detailed information on the sources of mercury and its transfer in the food web in offshore fishing grounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.