The condensation reaction between 2-pyridinecarboxaldehyde and diethylenetriamine, 3-[(2-aminoethyl)amino]propylamine, and 3,3'-iminobis(propylamine) in a 2:1 molar ratio yields ligands that may be isolated exclusively in the dissymmetric (cyclic) isomeric forms L(A), L(B)/L(B*), and L(C). The template effect of a metal center (Fe(II), Ni(II), and Zn(II)) results in the ring opening of L(C) including one hexahydropyrimidine ring and one (long) propylene bridge. The resulting symmetric bis-Schiff base isomeric form L(C') is stabilized through pentacoordination, yielding [Fe(II)L(C')(NCS)](NCS) (3), [Ni(II)L(C')(NCS)](NCS) (6), and [Zn(II)L(C')(NCS)](NCS) (9). The same metal centers are too bulky to exert a template effect on L(A) including one imidazolidine ring and one (short) ethylene bridge. L(A) acts as a tetradentate ligand yielding [Fe(II)L(A)(NCS)2] (1), [Ni(II)L(A)(NCS)2] (4), and [Zn(II)L(A)(NCS)2] (7). The template effect of the metal center is selective toward the ligand L(B)/L(B*) including a hexahydropyrimidine (imidazolidine) ring and the shorter ethylene (longer propylene) bridge. The Fe(II) cation is small enough to exert a template effect, resulting in the ring opening of L(B)/L(B*). The resulting bis-Schiff base L(B') is stabilized through pentacoordination, yielding [Fe(II)L(B')(NCS)](NCS) (2). Ni(II) is too bulky to promote the ring opening of L(B)/L(B*): L(B) acts as a tetradentate ligand, yielding [Ni(II)L(B)(NCS)2] (5) (the L(B*) isomer is totally converted to L(B)). The coordinative requirements and stereochemical preference of the bulkier Zn(II) cation allow neither the ring opening of L(B)/L(B*) nor the tetracoordination of L(B) or L(B*) but stabilize the novel tetradentate dissymmetric form L(B degrees) in [Zn(II)L(B degrees)(NCS)2].H2O (8) (L(B degrees) results from MeOH addition across the imine bond of L(B)). Density functional theory calculations performed for Ni(II) and Zn(II) complexes of the L(B)/L(B*)/L(B degrees) set of ligands allowed one to compare the relative stabilities of all possible isomers, showing that the most stable ones correspond to those experimentally obtained: isomerization, or methanol addition across the imine bond, of the tetradentate ligand depends on the relative stabilities of all possible isomeric complexes.
Read full abstract