Objective. Kinesthetic Motor Imagery (KMI) represents a robust brain paradigm intended for electroencephalography (EEG)-based commands in brain-computer interfaces (BCIs). However, ensuring high accuracy in multi-command execution remains challenging, with data from C3 and C4 electrodes reaching up to 92% accuracy. This paper aims to characterize and classify EEG-based KMI of multilevel muscle contraction without relying on primary motor cortex signals. Approach. A new method based on Hurst exponents is introduced to characterize EEG signals of multilevel KMI of muscle contraction from electrodes placed on the premotor, dorsolateral prefrontal, and inferior parietal cortices. EEG signals were recorded during a hand-grip task at four levels of muscle contraction (0%, 10%, 40%, and 70% of the maximal isometric voluntary contraction). The task was executed under two conditions: first, physically, to train subjects in achieving muscle contraction at each level, followed by mental imagery under the KMI paradigm for each contraction level. EMG signals were recorded in both conditions to correlate muscle contraction execution, whether correct or null accurately. Independent component analysis (ICA) maps EEG signals from the sensor to the source space for preprocessing. For characterization, three algorithms based on Hurst exponents were used: the original (HO), using partitions (HRS), and applying semivariogram (HV). Finally, seven classifiers were used: Bayes network (BN), naive Bayes (NB), support vector machine (SVM), random forest (RF), random tree (RT), multilayer perceptron (MP), and k-nearest neighbors (kNN). Main results. A combination of the three Hurst characterization algorithms produced the highest average accuracy of 96.42% from kNN, followed by MP (92.85%), SVM (92.85%), NB (91.07%), RF (91.07%), BN (91.07%), and RT (80.35%). of 96.42% for kNN. Significance. Results show the feasibility of KMI multilevel muscle contraction detection and, thus, the viability of non-binary EEG-based BCI applications without using signals from the motor cortex.