Declines in estrogen levels occur in women transitioning to menopause. Estrogen hormones play important roles in multiple systems of the body, and estrogen loss is associated with a variety of symptoms that can decrease quality of life. The gut microbiota is involved in regulating endogenous estrogen levels. A portion of estrogen glucuronides can be reactivated in the gut by the microbial enzyme β-glucuronidase, and the resulting free estrogens can return to the bloodstream. Here, we carried out in vitro screening of β-glucuronidase activities for 84 strains belonging to 16 different species of lactic acid bacteria and bifidobacteria and found that one and three strains of Levilactobacillus brevis and Lacticasebacillus rhamnosus, respectively, can deconjugate estrogens. Among these strains, L. brevis KABP052 had the highest β-glucuronidase activity. Moreover, in an exploratory, randomized, double-blind, placebo-controlled trial, we demonstrated that serum estrogen levels in healthy peri- and postmenopausal women given a probiotic formula containing KABP052 were maintained over time, whereas levels significantly decreased in the group given a placebo. Significantly higher levels of estradiol (31.62 ± 7.97 pg/mL vs. 25.12 ± 8.17 pg/mL) and estrone (21.38 ± 8.57 pg/mL vs. 13.18 ± 8.77 pg/mL) were observed in the probiotic versus placebo group after 12 weeks of intervention. This clinical study demonstrated for the first time the estrogen modulation capacity of a probiotic formula containing a bacterial strain having β-glucuronidase activity in women during the menopausal transition and formed the basis for future investigations using probiotics in the menopausal population.