The problem of robust asymptotic stabilization is considered for a class of discrete-time uncertain linear systems with multiple uncertain time-delayed states and input constraints. Compared with other works in the literature, the proposed approach takes the information of the delayed states with the estimated time-delays indices into full consideration. Based on the predictive control principle of receding horizon optimization and Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, a time-delayed state dependent quadratic function is considered for incorporating MPC problem formulation. The robust MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. The proposed approach allows for the synthesis of robust memory state feedback controllers with respect to uncertainties on the implemented delay. Since developing the improved memory state feedback controller, the novel improved method is much less conservative and more general. Finally, the numerical simulation results prove availability of the proposed method.
Read full abstract