Methamphetamine (METH) addiction can damage the central nervous system, resulting in cognitive impairment and memory deficits. Low target effects have limited the utility of anti-addiction drugs because the presence of the blood–brain barrier hinders the effective delivery of drugs to the brain. Angiopep-2 can recognize and target low-density lipoprotein receptor-associated protein 1 (LRP-1) on the surface of cerebral capillary endothelial cells, causing cross-cell phagocytosis, and thus has high blood–brain barrier transport capacity. Resveratrol (RSV) has been found to be a neuroprotective agent in many nervous system diseases. In our study, we modified Angiopep-2 on the surface of the erythrocyte membrane to obtain a modified erythrocyte membrane (Ang-RBCm) and coated RSV-loaded poly(ε-caprolactone)–poly(ethylene glycol) (PCL-PEG) nanoparticles with Ang-RBCm (Ang-RBCm@RSVNPs) to treat METH addiction. Our results showed that Ang-RBCm@RSVNPs can penetrate the blood–brain barrier and accumulate in the brain better than free RSV. Besides, mice treatetd with Ang-RBCm@RSVNPs showed less preference to METH-paired chamber and no noticeable tissue toxicity or abnormality was found in H&E staining images. Electrophysiological experiments demonstrated Ang-RBCm@RSVNPs could elevate synaptic plasticity impaired by METH. These indicated that Ang-RBCm@RSVNPs has better anti-addiction and neuroprotective effects. Therefore, Ang-RBCm@RSVNPs has great potential in the treatment of METH addiction.