Plasma membrane rupture often leads to cell damage, especially when there is a lack of membrane repair proteins near the wounds due to genetic mutations in organisms. To efficiently promote the repair of the injured lipid membrane, nanomedicines may act as a promising alternative to membrane repair proteins, but the related research is still in its infancy. Herein, using dissipative particle dynamics simulations, we designed a class of Janus polymer-grafted nanoparticles (PGNPs) that can mimic the function of membrane repair proteins. The Janus PGNPs comprise both hydrophobic and hydrophilic polymer chains grafted on nanoparticles (NPs). We track the dynamic process of the adsorption of Janus PGNPs at the damaged site in the lipid membrane and systematically assess the driving forces for this process. Our results reveal that tuning the length of the grafted polymer chains and the surface polarity of the NPs can efficiently enhance the adsorption of Janus PGNPs at the site of the damaged membrane to reduce membrane stress. After repair, the adsorbed Janus PGNPs can be successfully detached from the membrane, leaving the membrane untouched. These results provide valuable guidelines for designing advanced nanomaterials for the repair of damaged lipid membranes.
Read full abstract