Human organic anion transporter 3 (hOAT3) is localized at the basolateral membrane of renal proximal tubule cells and facilitates the renal secretion of numerous clinical drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, antihypertension drugs and anti-inflammatories. The present study explored the role of serum and glucocorticoid-inducible kinase 1 (sgk1) in the regulation of hOAT3. It was shown that over-expression of sgk1 in hOAT3-expressing cells stimulated hOAT3 transport activity by enhancing the transporter expression at the plasma membrane, kinetically reflected as an increased maximal transport velocity Vmax without substantial change in the substrate-binding affinity Km . In contrast, treatment of cells with the sgk-specific inhibitor GSK650394 resulted in a dose-dependent inhibition of hOAT3 transport activity. Evidence was further provided that sgk1 regulation of hOAT3 activity was mediated by ubiquitin ligase Nedd4-2, an enzyme previously shown to have an inhibitory effect on hOAT3. It was shown that sgk1 phosphorylated Nedd4-2, weakened the association between Nedd4-2 and hOAT3, and decreased hOAT3 ubiquitination. Functionally, the sgk1-stimulated hOAT3 transport activity was attenuated in the presence of a ligase-dead mutant of Nedd4-2. In summary, the investigation established for the first time that sgk1 stimulates hOAT3 transport activity by interfering with the inhibitory effect of Nedd4-2 on the transporter.
Read full abstract