Since the beginning of the outbreak, a large number of clinical trials have been registered worldwide, and thousands of drugs have been investigated to face new health emergency of highly contagious COVID-19 caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Drug repurposing, i.e., utilizing an approved drug for a different indication, offers a time- and cost-efficient alternative for making new (relevant) therapies available to physicians and patients. Considering given strategy, many approved and investigational antiviral compounds, alone or in various relevant combinations, used in the past to fight Severe Acute Respiratory Syndrome Coronavirus-1, Middle East Respiratory Syndrome Coronavirus, Human Immunodeficiency Virus type 1, or Influenza viruses are being evaluated against the SARS-CoV-2. Triazavirin (TZV), a non-toxic broad--spectrum antiviral compound, is efficient against various strains of the Influenza A virus (Influenza Virus A, Orthomyxoviridae), i.e., swine flu (H1N1, or H3N2), avian influenza (H5N1, H5N2, H9N2, or highly pathogenic H7N3 strain), Influenza B virus (Influenza Virus B, Orthomyxoviridae), Respiratory Syncytial Virus (Orthopneumovirus, Pneumoviridae), Tick-Borne Encephalitis Virus (known as Forest-Spring Encephalitis Virus; Flavivirus, Flaviviridae), West Nile Virus (Flavivirus, Flavaviridae), Rift Valley Fever Virus (Phlebovirus, Bunyaviridae), and Herpes viruses (Simplexviruses, Herpesviridae) as well. In regard to COVID-19, the molecule probably reduced inflammatory reactions, thus limiting the damage to vital organs and reducing the need for therapeutic support, respectively. In addition, in silico computational methods indicated relatively satisfactory binding affinities of the TZV ligand to both structural (E)- and (S)-proteins, non-structural 3-chymotrypsin-like protease (3-CLpro) of SARS-CoV-2 as well as human angiotensin-I converting enzyme-2 (ACE-2). The interactions between TZV and given viral structures or the ACE-2 receptor for SARS-CoV-2 might effectively block both the entry of the pathogen into a host cell and its replication. Promising treatment patterns of COVID-19 positive patients might be also based on a suitable combination of a membrane fusion inhibitor (umifenovir, for example) with viral RNA synthesis and replication inhibitor (TZV).