The membrane-associated heparan sulfate proteoglycan families consisting of the syndecans and glypicans are low-affinity receptors for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and a strong inhibitor of differentiation. Because syndecan-1, syndecan-4, and glypican-1 potentially play unique, but pivotal, roles in muscle cell proliferation and differentiation, these proteoglycans were examined for their effect on muscle cell proliferation and differentiation and FGF2 responsiveness. In the present study, turkey Randombred Control 2 line myogenic satellite cells were transfected with expression vector constructions of syndecan-1, syndecan-4, or glypican-1 to assay their role during muscle development and the effect on FGF2 responsiveness. During proliferation, only syndecan-1 increased proliferation. Both syndecan-4 and glypican-1 decreased proliferation at 72 h but generally did not affect the proliferation process. There was no interaction between the transfected gene and cell proliferation response to FGF2. Glypican-1 increased differentiation early in the process (24 h), and at later times differentiation was decreased by glypican-1. Both syndecan-1 and syndecan-4 overexpression decreased differentiation. During differentiation, except for glypican-1 at 48 h of differentiation, there was no interaction between gene treatment and FGF2 responsiveness. This result indicates that FGF2 responsiveness was not affected by the overexpression of syndecan-1, syndecan-4, and glypican-1 during differentiation. These data demonstrate that syndecan-1, syndecan-4, or glypican-1 differentially affect the processes of turkey muscle cell proliferation and differentiation, and can regulate these developmental stages in an FGF2-independent manner.