Many different tumor cell types (breast, ovarian, glioma, liver and colon) were retrovirally transduced with the human macrophage colony stimulating factor (M-CSF) gene (either the membrane associated form [mM-CSF] or the secreted form [sM-CSF]). These cells were tested for their ability to display increased amounts of mM-CSF in response to dexamethasone. M-CSF-transfected tumor cells expressed additional mM-CSF in response to 18–72 h incubations with 3–15 μg/ml dexamethasone, while non-transfected parental cells were unaffected by this treatment. Increased mM-CSF protein expression on the M-CSF transduced cells was observed by flow cytometry and Western blotting using M-CSF specific antibodies. Northern blot analysis revealed an increase in the mM-CSF specific transcripts within the dexamethasone-treated mM-CSF transduced cells, but this was not seen within the non-transfected tumor cells that were treated with dexamethasone. ICAM-1 expression was unaffected by dexamethasone treatment, indicating that this response is mM-CSF specific. All trans-retinal and 1,25-dihydroxy vitamin D3 compounds that have been reported to induce M-CSF expression failed to increase mM-CSF. When dexamethasone-treated mM-CSF transfected clones were used as target cells for macrophage-mediated cytotoxicity assays, an increased killing with the dexamethasone-treated cells was seen. The macrophage-mediated cytotoxicity of these mM-CSF expressing tumor cells was blocked with excess recombinant M-CSF by saturating M-CSF receptors on the macrophage that is required for this form of tumor cell killing. This work suggests the possibility that dexamethasone may prove useful for vaccination purposes using mM-CSF retrovirally transfected tumor cells.
Read full abstract