Prostate cancer is a major worldwide health concern, and existing treatments often face challenges such as drug resistance, systemic toxicity, and insufficient targeting. Polymeric nanocarriers are currently employed as sophisticated tools in the field of oncology, offering the possibility to augment the administration and efficacy of anticancer therapies. In order to effectively eradicate prostate cancer, this review delves into the function of polymeric nanocarriers. Databases such as PubMed, ScienceDirect, and Google Scholar were utilized to do a comprehensive literature assessment. For this search, we used terms like "polymeric nanocarriers," "prostate cancer," "drug delivery," and "nanotechnology." Studies have shown that polymeric nanocarriers greatly improve the delivery and effectiveness of treatments for prostate cancer. Nanocarriers enhance the solubility, stability, and bioavailability of drugs, resulting in improved therapeutic effects. Functionalization using targeting ligands, such as folic acid and prostate-specific membrane antigen (PSMA) antibodies, has demonstrated the ability to enhance targeted specificity, resulting in a decrease in off-target effects and systemic toxicity. Polymeric nanocarriers facilitate precise and prolonged drug delivery, leading to elevated drug levels in tumor tissues. Polymeric nanocarriers are a notable breakthrough in the management of prostate cancer, providing precise medication administration, decreased toxicity, and improved therapy effectiveness. However, additional study is necessary to enhance the design of nanocarriers, evaluate their long-term safety, and enable their use in clinical applications. Continued interdisciplinary research and collaboration are essential for addressing current obstacles and maximizing the promise of polymeric nanocarriers in the treatment of prostate cancer.
Read full abstract