AbstractPolydimethylsiloxane polyurethane (PDMS‐PU), which was synthesized from PDMS as the soft segment, was blended into a variety of ester‐ or ether‐based soft‐segment waterborne polyurethanes with different concentrations to investigate the crystallization, thermal, and physical properties of the membrane formations. According to X‐ray analysis, the ether‐based PUs, synthesized from soft segments of poly(propylene glycol) (PPG1000) or poly(ethylene glycol) (PEG2000), were found to have maximum crystallinity at a 5% blending ratio of PDMS‐PU, but the ester‐based PU, synthesized from soft segments of polycaprolactone (PCL1250), had decreased crystallinity at a 5% blending ratio. Differential scanning calorimetric analysis revealed that the Tg,s values of PUs were highest when the blending ratio of PDMS‐PU was 5%–10%, except for PU from PCL1250. Moreover, ether‐based PUs showed maximum Tm,h values, but the Tm,h of the ester‐based PU was greatly reduced when PU with PCL1250 was blended with PDMS‐PU. In addition, the PU from PEG2000 had the highest melting entropy. Mechanical property analysis showed that the stress of ether‐based PUs would be increased when PUs were blended with a small amount of PDMS‐PU and that the stress of PU from poly(tetramethylene glycol) (PTMG1000) increased to its greatest value (20–30 MPa). On the other hand, the ester‐based PU, from PCL1250 blended with PDMS‐PU, would have reduced stress. On the whole, the stress and strain of PU from PEG1000 had excellent balance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 210–221, 2006