A series of chalcones (1–14) were synthesized, characterized (using IR and 1H NMR techniques), and evaluated with an objective to manage rice root-knot nematode (RRKN) (Meloidogyne graminicola) both under pluronic gel and field conditions. Out of these fourteen compounds, 1-(4-fluoro-phenyl)-3-phenyl-propenone (13) and 1,3-diphenyl-propenone (14) showed promising and dose dependent activity at 10, 20, and 40 mg L−1. A significant reduction in penetration of second stage juveniles (J2s) in rice roots was observed in compounds 13 (9.5–12.0 J2s/plant) and 14 (10.5–13.4 J2s/plant) compared to control plants (PB1121) (13.5–23.6 J2s/plant) in pluronic gel study. The results of field trials indicated that 14, showed significantly (P ≤ 0.05) better plant growth on 28 days after sowing (DAS) compared to 13. Both 13 and 14 reduced gall formation significantly than carbofuran 3 G @1 kg a.i./ha. However, lower concentrations were less effective in field in reducing the gall formation. Also, a significant reduction in the number of galls was observed when soil was drenched with 14 @ 40 mg L−1. However, root dipping was not as effective as soil drenching. The study revealed that both the chalcones have the potential for effective management of RRKN in fields, and can be a better alternative to carbofuran.