Multidrug-resistant (MDR) Enterobacterales are a priority health issue with few treatment options. Recently, fosfomycin has been reconsidered for MDR bacterial infections. Zidovudine, licensed for the treatment of human immunodeficiency virus (HIV), has unexploited antibacterial properties and has been considered for drug repurposing. The aim of this study was to assess the effect of the combination of fosfomycin plus zidovudine against clinical MDR Enterobacterales isolates. Minimum inhibitory concentration (MIC) determination and checkerboard assays for 36 MDR Enterobacterales strains were performed. In addition, fosfomycin-resistant strains were evaluated using time-kill assay and in an in vivo Galleria mellonella infection model. Zidovudine and fosfomycin MICs ranged between 0.06 to >64 mg/L and 0.125 to >512 mg/L, respectively. A synergistic effect [fractional inhibitory concentration index (FICI) ≤0.5] was observed in 25 isolates and no antagonistic effect was observed in the remaining isolates. For 7 of 8 fosfomycin-resistant strains (MIC > 32 mg/L), zidovudine combination was able to restore fosfomycin susceptibility. These results were confirmed by time-kill assays. Fosfomycin+zidovudine presented greater larval survival (20-50%) than monotherapy. Synergistic activity was observed for fosfomycin+zidovudine in 69.4% of the tested strains. In vivo experiments confirmed the enhanced effectiveness of the combination. The zidovudine concentrations tested here can be reached in human serum using the actual licensed dosage, therefore this combination deserves further clinical investigation.