The antiarrhythmic effect of melatonin(MLT) has been demonstrated in several studies; however, this hypothesis has recently been contested. Our research seeks to determine if exogenous MLT supplementation can reduce atrial fibrillation (AF) susceptibility due to sleep deprivation (SD) by addressing Ca2+ mishandling and atrial mitochondrial oxidative stress. Adult rats received daily MLT or vehicle injections and were exposed to a modified water tank. We evaluated MLT's impact on AF susceptibility by analyzing atrial electrical and structural changes, calcium handling, and oxidative stress markers. Techniques used included electrophysiological recording, echocardiography, optical mapping, histopathology, and molecular assays to understand MLT's protective effects against sleep deprivation-induced AF. Our findings indicate that MLT treatment effectively mitigates SD-induced AF, safeguards against atrial structural alterations, diminishes mitochondrial oxidative stress and normalizes calcium dynamics. Notably, MLT corrected calcium transient duration (CaD), action potential duration (APD), and conduction heterogeneity, shortened calcium transient refractoriness, and improved arrhythmogenic atrial alternans and spatially discordant alternans, thereby lowering the arrhythmogenic potential of the atria during sleep deprivation. In terms of mechanisms, MLT prevents SD-induced activation of ROS/CaMKII in atrial cardiomyocytes, reversing calcium transient refractoriness and inhibiting arrhythmogenic alternans. MLT significantly decreases the susceptibility to SD-induced AF by ameliorating mitochondrial oxidative stress and Ca2+ mishandling. These findings suggest a potential therapeutic application of MLT as an antiarrhythmic intervention for SD-related AF and underscore the need for further investigation, including clinical studies, to validate these mechanisms.
Read full abstract