Hyperpigmentation skin disorders are marked by an abnormal accumulation or export of melanin pigment synthesized within melanocytes and pose a significant aesthetic concern. The search for novel natural compounds that exhibit pharmacological potential for treating pigmentation disorders is growing. In this study, kahweol (KW) and cafestol (CFS), two structural analogs of coffee diterpenes, were evaluated and compared for their effects on melanogenesis using B16F10 mouse melanoma cells and primary human melanocytes derived from Asian and African American skin. To the best of our knowledge, there are no reports of the effects of KW and CFS on melanogenesis yet. We first screened nontoxic concentrations of both compounds using an MTS assay after 72 h incubations and subsequently tested their effects on melanin synthesis and export. Cellular tyrosinase activity and cell-free mushroom tyrosinase activity were assayed to study the mechanisms of melanogenesis suppression. Human melanocytes from a moderately pigmented donor (HEMn-MP cells) and from a darkly pigmented donor (HEMn-DP cells) were next examined, and effects on cellular viability, melanin content, cellular tyrosinase activity, and melanin export (quantitated via dendricity) were similarly examined for both compounds. Our results show that KW and CFS did not significantly affect intracellular melanin content but suppressed extracellular melanin in B16F10 cells and dendritic parameters in human melanocytes, indicating their unique capacity to target extracellular melanogenesis and melanin export. Although KW showed a greater extracellular melanogenesis inhibitory capacity in B16F10 cells, in both primary melanocyte cells, CFS emerged as a potent inhibitor of melanin export compared to KW. Together, these results reveal novel modes of action of both compounds and indicate a promise to use CFS as a novel candidate for treating hyperpigmentation disorders of the human skin for clinical and cosmetic use. Additional research is necessary to shed light on the molecular pathways and the efficacy of melanogenesis inhibition by CFS in 3D human skin equivalents and in vivo studies.