AbstractNear the ocean surface, river plumes influence stratification, buoyancy and transport of tracers, nutrients and pollutants. The extent to which river plumes influence the overall circulation, however, is generally poorly constrained. This work focuses on the South China Sea (SCS) and quantifies the dynamical impacts of the Mekong River plume, which is bound to significantly change in strength and seasonality in the next 20 years if the construction of over hundred dams moves ahead as planned. The dynamic impact of the freshwater fluxes on the SCS circulation are quantified by comparing submesoscale permitting and mesoscale resolving simulations with and without riverine input between 2011 and 2016. In the summer and early fall, when the Mekong discharge is at its peak, the greater stratification causes a residual mesoscale circulation through enhanced baroclinic instability. The residual circulation is shaped as an eddy train of positive and negative vorticity. Submesoscale fronts are responsible for transporting the freshwater offshore, shifting eastward the development of the residual mesoscale circulation, and further strengthening the residual eddy train in the submesoscale permitting case. Overall, the northward transport near the surface is intensified in the presence of riverine input. The significance of the mesoscale‐induced and submesoscale‐induced transport associated with the river plume is especially important in the second half of the summer monsoon season, when primary productivity has a secondary maximum. Circulation changes, and therefore productivity changes, should be anticipated if human activities modify the intensity and seasonality of the Mekong River plume.