The competence of meiotic chromosome configuration at the time of co-culture of oocytes with spermatozoa is an essential prerequisite for successful in vitro fertilization (IVF). Although this technology has been used in several livestock species, various intrinsic and extrinsic factors affecting the high repeatablity of IVF have yet to be understood. The present study was conducted to determine the appropriate time for coculture of oocytes and spermatozoa in order to optimize the fertilization rate in sheep, goats and buffalo. Oocytes were collected from the ovaries of slaughtered animals. The oocytes were divided into 10 groups and cultured for maturation in TCM-199 supplemented with estrous cow serum for different durations at 38.5 · 0.5|C in a CO 2 incubator. Sheep and goat oocytes were removed from culture medium after 0,6,12,22,24,26,28,30,32 and 36 and buffalo oocytes after 0,6,12,16,20,22,24,26,28, and 36 h. The oocytes were treated with hypotonic solution (0.75M KCl) and fixed in Carony's fixative on glass slides. The fixed oocytes were stained with Giemsa solution, and the meiotic chromosomes were evaluated under a compound microscope at x1000 magnification. Observations were recorded on a total of 1328 oocytes (sheep, 409; goat, 727 and buffalo, 192). The sequential configurations of diffused chromatin, pachytene, diplotene (along with nucleoli), diakinesis and metaphase II (MII) were analyzed at different durations of culture. Control oocytes (fixed at 0 h without incubation) were mostly at the pachytene stage, and as the duration of culture increased the instances of diplotene, diakinesis and finally MII increased. Oocytes at the MII stage of meiosis are known to be at the optimal stage of development for co-culture with spermatozoa and successful in vitro fertilization. On the basis of sequential configuration of chromosomes, it was found that the optimal duration of in vitro maturation of oocytes is 32, 30 and 24 h for sheep, goats and buffalo, respectively.