Is it possible to induce in vitro reorganization of primary human testis cells from testicular sperm extraction (TESE) biopsies, maintain their long-term cultivation in a 2D system and identify cellular compositions? In vitro reorganization of primary human testis cells from TESE biopsies and their long-term cultivation on uncoated cell culture dishes is feasible and the cellular compositions can be uncovered through gene expression and microscopic analyses. It has been shown in the rodent model that mixtures of testicular cell types are able to reassemble into clusters when cultivated on different kinds of surfaces or three-dimensional matrices. Two recent publications demonstrated the ability of primary human testicular cells to assemble into testicular organoids and their cultivation for a period of 3-4 weeks. Primary human testis cells from TESE biopsies from 16 patients were reorganized in vitro and the clusters were cultivated long term on uncoated cell culture dishes, providing a solid ground for in vitro spermatogenesis. Gene expression analysis as well as fluorescence/transmission electron microscopy (TEM) were employed to uncover the cellular composition of the clusters. Testis biopsies from adult, normogonadotropic patients displaying full spermatogenesis (n = 11), hypospermatogenesis (n = 2), predominantly full spermatogenesis with some hypospermatogenic tubules (n = 1), meiotic arrest (n = 1) or mixed atrophy (n = 1) were enzymatically digested and dispersed cells were cultivated on 96-well plates or chamber dishes as aggregate-free cell suspensions. Time-lapse imaging of cluster formation was performed over a period of 48 h. For receptor tyrosine kinase inhibition of cluster formation, cells were treated twice with K252a within 2-3 days. Immunofluorescence staining and confocal microscopy was carried out on clusters after 1-3 weeks of cultivation to identify the presence of Sertoli cells (SC) (SOX9), peritubular myoid cells (SMA), Leydig cells (LC) (STAR), undifferentiated spermatogonia (FGFR3), differentiating spermatogonia/spermatocytes (DDX4) and postmeiotic germ cells (PRM1). Single clusters from four patients and a pool of eight larger clusters from another patient were manually picked and subjected to quantitative real-time PCR to evaluate the presence of SC (SOX9, AR), LC (INSL3, STAR, HSD3B1), peritubular myoid cells (ACTA2), fibroblasts (FSP1), endothelial cells (CD34), macrophages (CD68), undifferentiated spermatogonia (FGFR3), differentiating spermatogonia/spermatocytes (DDX4) and postmeiotic germ cells (PRM1). Finally, an ultrastructural investigation was conducted based on TEM of clusters from six different patients, among them 3-month cultivated large clusters from two patients. Quantitative PCR-based analysis of single-picked testicular cell clusters identified SC, peritubular myoid cells, endothelial cells, fibroblasts, macrophages, spermatids and LC after 1, 2 or 3 weeks or 3 months of cultivation. Immunofluorescence positivity for SC and peritubular myoid cells corroborated the presence of these two kinds of testis niche cells. In addition, round as well as elongated spermatids were frequently encountered in 1 and 2 weeks old clusters. Transmission electron microscopical classification confirmed all these cell types together with a few spermatogonia. Macrophages were found to be of the proinflammatory M1 subtype, as revealed by CD68+/CD163-/IL6+ expression. Time-lapse imaging uncovered the specific dynamics of cluster fusion and enlargement, which could be prevented by addition of protein kinase inhibitor K252a. N/A. Cell composition of the clusters varied based on the spermatogenic state of the TESE patient. Although spermatids could be observed with all applied methods, spermatogonia were only detected by TEM in single cases. Hence, a direct maintenance of these germ cell types by our system in its current state cannot be postulated. Moreover, putative dedifferentiation and malignant degeneration of cells in long-term cluster cultivation needs to be investigated in the future. This work demonstrates that the reorganization of testicular cells can be achieved with TESE biopsies obtained from men enroled in a standard clinical assisted reproduction program. The formed clusters can be cultivated for at least 3 months and are composed, to a large extent, of the most important somatic cell types that are essential to support spermatogenesis. These findings may provide the cellular basis for advances in human in vitro spermatogenesis and/or the possibility for propagation of spermatogonia within a natural stem cell niche-like environment. The project was funded by a DFG grant to K.v.K. (KO 4769/2-1). The authors declare they have no conflicts of interest.