ABSTRACTRecreational boating can impact benthic ecosystems in coastal waters. Reduced height and cover of aquatic vegetation in shallow Baltic Sea inlets with high boat traffic have raised concerns about cascading effects on benthic communities in these ecosystems. Here, we characterized the diversity and composition of sediment-associated microbial and meiofaunal communities across five bays subjected to low and high degrees of boating activity and examined the community-environment relationships and association with bay morphometry. We found that recreational boating activity altered meiofauna alpha diversity and the composition of both micro- and meiobenthic communities, and there were strong correlations between community structure and morphometric variables like topographic openness, wave exposure, water surface area, and total phosphorous concentrations. Inlets with high boat traffic showed an increase of bacterial taxa like Hydrogenophilaceae and Burkholderiaceae. Several meiofauna taxa previously reported to respond positively to high levels of suspended organic matter were found in higher relative abundances in the bays with high boat traffic. Overall, our results show that morphometric characteristics of inlets are the strongest drivers of benthic diversity in shallow coastal environments. However, while the effects were small, we found significant effects of recreational boating on benthic community structure that should be considered when evaluating the new mooring projects.IMPORTANCE With the increase of recreational boating activity and development of boating infrastructure in shallow, wave-protected areas, there is growing concern for their impact on coastal ecosystems. In order to properly assess the effects and consider the potential for recovery, it is important to investigate microbial and meiofaunal communities that underpin the functioning of these ecosystems. Here, we present the first study that uses DNA metabarcoding to assess how benthic biodiversity in shallow coastal areas is impacted by recreational boating. Our study shows a relatively small, but significant, effect of recreational boating both on meiofauna alpha diversity and meiofauna and bacterial community composition. However, both meiofauna and bacterial community composition in shallow benthic habitats is mediated to a higher degree by abiotic variables, such as topographic openness, area or size of the inlets, and wave exposure. Despite the fact that the effects were small, such impacts on benthic biodiversity should be considered in the management of coastal shallow habitats.