By studying the dynamic characteristics of and key growth stages for mercury (Hg) enrichment in rice, the Hg migration and translocation processes in this species can be better understood. In this study, a pot experiment was conducted, wherein two rice cultivars, Tianyouhuazhan (TYHZ, indica) and Zhendao 18 (ZD18, japonica), were selected and planted for analysing the Hg accumulation kinetic characteristics in rice plants. The plants were sampled at each growth stage, and the biomass and total Hg (THg) and methylmercury (MeHg) concentrations of each tissue were measured. The relative Hg contribution rates (CRs) in whole rice plants and rice grains were calculated, and the growth stage with the highest relative contribution was identified as the key growth stage for Hg accumulation. The results indicated that in rice, the MeHg translocation capability was stronger than the THg translocation capability. Significant differences in the kinetic characteristics of Hg accumulation were found between the two rice cultivars, and the TYHZ rice grains had a stronger Hg accumulation ability than the ZD18 rice grains. The key growth stages for THg accumulation in whole rice plants of both cultivars were the tillering and booting stages, while that for MeHg accumulation was the tillering stage. The key period for Hg accumulation in rice grains was the grain filling stage for both cultivars. The insights from this study could provide scientific guidance for the safe production of rice in Hg-contaminated soil.
Read full abstract