The temporal and spatial evolution of a seismogenic megasplay fault in the Kumano area, Nankai Trough (southwest Japan), is revealed by detailed investigation of the three‐dimensional structure of the shallow portions of the fault, combined with the results of drilling and dating of cores from Integrated Ocean Drilling Program (IODP) Expedition 316. The ENE striking eastern portion of the splay fault has remained active since the inception of faulting at ∼1.95 Ma. The recent shortening rate is ∼1 m/kyr, which represents ∼1.5%–2.5% of the total plate convergence rate of ∼40–65 m/kyr. The NE striking western portion of the splay fault exhibits a different mode of activity. Early stage activity (before 1.55 Ma) was similar to the eastern portion, but the fault was inactive between 1.55 and 1.24 Ma. The fault was reactivated for a short time at ∼1.24 Ma but again ceased activity after formation of the secondary branch and has been inactive since 1.24 Ma. Cessation of splay fault activity in the western domain after 1.55 Ma may be due to collision with a seamount and resulting bending of the accretionary prism in the splay fault footwall. Continuous activity of the eastern domain of the splay fault after 1.24 Ma may be related to geometrical favorability due to reorientation of the fault after the seamount passed beneath the imbricate thrust zone, leading to initiation of slightly oblique subduction.
Read full abstract