The immunomodulatory activity of a betulonic acid-based compound with furocoumarin (BABCF; 2-azido, 9-N-methylpiperazinomethyl oreozelone) has been investigated. Male C57BL/6 mice (aged 3 months) treated with the cytostatic agent cyclophosphamide (CP) and intact individuals served as experimental models. The expression of genes was studied in bone marrow (IL-12, IL-10, IL-1β, TNF-α, TGF-β, M-CSF, GM-CSF) or in the suspension of peritoneal cells (IL-12, IL-10; as the injection site). The surface markers of T-lymphocytes (CD3, CD4, and CD8) in fractions of venous blood mononuclear cells (MNCs) were determined by means of flow cytometry using antibodies. Histological and morphometric studies were performed to assess the impact of CP and BABCF on the thymus. BABCF caused a pronounced (about 3-fold) increase in relative expression of the GM-KSF gene. BABCF caused a local increase in the expression of IL-12 in the peritoneal cavity cells and restored the relative content of T-lymphocytes in the blood of CP-treated mice treated affecting mainly CD3⁺CD4⁺ lymphocytes. This substance reduced the tissue density of the thymic cortex and thymic medulla in CP-treated mice. Thus, results of this study suggest that BABCF exhibits a stimulating effect on the cellular link of immunity and promotes maintenance of the number of T-lymphocytes in the blood due to their migration from the central organs of the immune system.
Read full abstract