Abstract A novel positive displacement, high pressure, vertical axis wind pump (HP-VAWP) was evaluated for the application of stand-alone high-pressure reverse-osmosis desalination and drip irrigation systems. The direct interface between a vertical axis wind turbine (VAWT) and a positive displacement pump that delivers a constant liquid volume per revolution has never been studied before. Understanding the interaction between turbine and pump efficiencies, where delivery pressure is determined by back-pressure alone, is critical for efficient design. Wind tunnel experiments were conducted on a small-scale two-bladed turbine (0.4 m2 cross-sectional area) that operated on a dynamic stall principle. At these small laboratory scales, the turbine and pump peak efficiencies were relatively low (15% and 28%, respectively); nevertheless, the system produced nearly constant pressures in excess of 1.5 bar for a broad operational range. Moreover, the system exhibited a basic self-priming capability, and the turbine could easily be braked by overloading the pump. A conservative field-scale analysis of an HP-VAWP system indicated that a medium-size turbine (12.5 m2 cross-sectional area) could attain a peak efficiency of 12.9%. Realistic efficiencies greater than 20% are attainable, significantly exceeding the 4%–8% typical peak efficiency of the widely used American multibladed wind pumps. Indeed, our research indicates that an HP-VAWP system is viable and requires further development. The benefits of zero carbon emissions during operation, high relative efficiency, and easy manufacturing and maintenance render the HP-VAWP ideal for stand-alone or off-grid environments.