An information system network (ISN) can be modeled as a stochastic-flow network (SFN). There are several algorithms to evaluate reliability of an SFN in terms of Minimal Cuts (MCs). The existing algorithms commonly first find all the upper boundary points (called d-MCs) in an SFN, and then determine the reliability of the network using some approaches such as inclusion-exclusion method, sum of disjoint products, etc. However, most of the algorithms have been compared via complexity results or through one or two benchmark networks. Thus, comparing those algorithms through random test problems can be desired. Here, the authors first state a simple improved algorithm. Then, by generating a number of random test problems and implementing the algorithms in MATLAB, the proposed algorithm is demonstrated to be more efficient than some existing ones in medium-sized networks. The performance profile introduced by Dolan and More is used for analyzing the output of programs.
Read full abstract