Overhead gaspers provide directional fresh airflow, and thus affect the local airflow pattern and contaminant distribution. To investigate the impact of gaspers on airborne disease transmission in an aircraft cabin with a personalized displacement ventilation system, numerical calculations were conducted in a seven-row, single-aisle, fully occupied, economy-class aircraft cabin with the computational fluid dynamics (CFD) simulation method. We first investigated the impact of source gasper direction and flow rate on the airborne transmission near the contaminant source. We then investigated the protective effect of the receptor's gasper. For a source passenger's gasper, the direction and flow rate of the gasper flow either increased or decreased the air contaminant transmission to other passengers. Directing the source gasper to the abdomen with a medium flow rate performed best by reducing the receptors' mean exposure index by at least 45%, as this approach minimized the contaminant circulation in the cabin. Turning on a receptor passenger's gasper could be an effective strategy to protect the receptor, and the working mechanism was revealed. The gasper-induced jet flow entrained the surrounding air into the jet region, and the protective effect was related to the contaminant concentration at ceiling level. With a suitable gasper direction and flow rate, the gasper jet formed a virtual barrier between the source passenger and the receptor. When the contaminants were transported upwards to a receptor's breathing zone, turning on the receptor's gasper reduced the contaminant concentration, since the downward gasper jet altered the airflow pattern in front of the receptor.