We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 +/- 0.01 microg/cm(2)/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 microg/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.
Read full abstract