Objective2017 blood pressure (BP) categories focus on cardiac risk. We hypothesize that studying the balance between mechanisms that increase or decrease BP across the medical phenome will lead to new insights. We devised a classifier that uses BP measures to assign individuals to mutually exclusive categories centered in the upper (Htn), lower (Hotn) and middle (Naf) zones of the BP spectrum; and examined the epidemiologic and phenotypic patterns of these BP-categories. MethodsWe classified a cohort of 832,560 deidentified electronic health records by BP-category; compared the frequency of BP-categories and four subtypes of Htn and Hotn by sex and age-decade; visualized the distributions of systolic, diastolic, mean arterial and pulse pressures stratified by BP-category; and ran Phenome-wide Association Studies (PheWAS) for Htn and Hotn. We paired knowledgebases for hypertension and hypotension and computed aggregate knowledgebase status (KB-status) indicating known associations. We assessed alignment of PheWAS results with KB-status for phecodes in the knowledgebase, and paired PheWAS correlations with KB-status to surface phenotypic patterns. ResultsBP-categories represent distinct distributions within the multimodal distributions of systolic and diastolic pressure. They are centered in the upper, lower, and middle zones of mean arterial pressure and provide a different signal than pulse pressure. For phecodes in the knowledgebase, 85% of positive correlations align with KB-status. Phenotypic patterns for Htn and Hotn overlap for several phecodes and are separate for others. Our analysis suggests five candidates for hypothesis testing research, two where the prevalence of the association with Htn or Hotn may be under appreciated, three where mechanisms that increase and decrease blood pressure may be affecting one another’s expression. ConclusionPairedPheWAS methods may open a phenome-wide path to disentangling hypertension and chronic hypotension. Our classifier provides a starting point for assigning individuals to BP-categories representing the upper, lower, and middle zones of the BP spectrum. 4.7 % of individuals matching 2017 BP categories for normal, elevated BP or isolated hypertension, have diastolic pressure < 60. Research is needed to fine-tune the classifier, provide external validation, evaluate the clinical significance of diastolic pressure < 60, and test the candidate hypotheses.