Purpose Due to its ability to support well-informed decision-making, business intelligence (BI) has grown in popularity among executives across a range of industries. However, given the volume of data collected in health-care organizations, there is a lack of exploration concerning its implementation. Consequently, this research paper aims to investigate the key factors affecting the acceptance and use of BI in healthcare organizations. Design/methodology/approach Leveraging the theoretical lens of the “unified theory of acceptance and use of technology” (UTAUT), a study framework was proposed and integrated with three context-related factors, including “rational decision-making culture” (RDC), “perceived threat to professional autonomy” (PTA) and “medical–legal risk” (MLR). The variables in the study framework were categorized as follows: information systems (IS) perspective; organizational perspective; and user perspective. In Jordan, 434 healthcare professionals participated in a cross-sectional online survey that was used to collect data. Findings The findings of the “structural equation modeling” revealed that professionals’ behavioral intentions toward using BI systems were significantly affected by performance expectancy, social influence, facilitating conditions, MLR, RDC and PTA. Also, an insignificant effect of PTA on PE was found based on the results of statistical analysis. These variables explained 68% of the variance (R2) in the individuals’ intentions to use BI-based health-care systems. Practical implications To promote the acceptance and use of BI technology in health-care settings, developers, designers, service providers and decision-makers will find this study to have a number of practical implications. Additionally, it will support the development of effective strategies and BI-based health-care systems based on these study results, attracting the interest of many users. Originality/value To the best of the author’s knowledge, this is one of the first studies that integrates the UTAUT model with three contextual factors (RDC, PTA and MLR) in addition to examining the suggested framework in a developing nation (Jordan). This study is one of the few in which the users’ acceptance behavior of BI systems was investigated in a health-care setting. More specifically, to the best of the author’s knowledge, this is the first study that reveals the critical antecedents of individuals’ intention to accept BI for health-care purposes in the Jordanian context.