The goal of this study is to assess the efficiency of Artificial Bee Colony (ABC) algorithm in finding the optimal solution of curve fitting problem specifically for medical images. Data of Computed Tomography (CT) images from two different patients were collected. The procedure of curve fitting for medical images include conversion of Digital and Communications in Medicine (DICOM) images to binary images, boundary and corner point detection, parameterization, and curve reconstruction by using ABC algorithm. Then, Sum Square Error (SSE) was used to calculate the distance of the fitted Cubic Bezier curve with the boundary of the original images. Based on the calculation and parameter tuning that had been done, the smallest error of both skulls is57.5754and28.8628, respectively. The finding of this study illustrated that the proposed method had efficiently produced fitted Bezier curve that resemble the original medical images. In addition, the used of Douglas Peucker algorithm helps to improve the performance of the proposed method since computational time can be minimized. This study had shown that the proposed method can be used as an alternative method in order to reconstruct or redesigned the medical images since it produces a small error. For future work, we are planning to explore and applied the ABC algorithm to reconstruct the missing part of the skull since it can reduce the time taken to produce the skull implant as well as reducing the cost of producing it.
Read full abstract