Medical image denoising is essential for improving the clarity and accuracy of diagnostic images. In this paper, we present an enhanced wavelet-based method for medical image denoising, aiming to effectively remove noise while preserving critical image details. After applying wavelet denoising, a bilateral filter is utilized as a post-processing step to further enhance image quality by reducing noise while maintaining edge sharpness. The bilateral filter's effectiveness heavily depends on its parameters, which must be carefully optimized. To achieve this, we employ Bayesian optimization, a powerful technique that efficiently identifies the optimal filter parameters, ensuring the best balance between noise reduction and detail preservation. The experimental results demonstrate a significant improvement in image denoising performance, validating the effectiveness of our approach.
Read full abstract