Abstract

Medical image denoising is essential for improving the clarity and accuracy of diagnostic images. In this paper, we present an enhanced wavelet-based method for medical image denoising, aiming to effectively remove noise while preserving critical image details. After applying wavelet denoising, a bilateral filter is utilized as a post-processing step to further enhance image quality by reducing noise while maintaining edge sharpness. The bilateral filter's effectiveness heavily depends on its parameters, which must be carefully optimized. To achieve this, we employ Bayesian optimization, a powerful technique that efficiently identifies the optimal filter parameters, ensuring the best balance between noise reduction and detail preservation. The experimental results demonstrate a significant improvement in image denoising performance, validating the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.