Microparticle sorting is crucial for applications in biomedicine, environmental monitoring, and biochip technology. However, traditional optical sorting methods often rely on external equipment, such as microfluidic devices. In this Letter, we proposed a phase-gradient force-based optical array sorting (POAS) scheme, which achieves the accurate transporting and sorting of the particles by regulating the phase-gradient force based on the physical characteristics of the particles. The method combines the function of particle transporting and sorting, eliminating the need for external auxiliary equipment. Based on the POAS scheme, we used the complex amplitude beam shaping algorithms to design a 1 × 2 array sorting beam with the controllable phase-gradient forces. The array sorting beam was used to experimentally sort two kinds of particles with different sizes, and the particles are first transported and then precisely sorted at the designated sorting nodes. All the parameters of the sorting beam were adjustable, which greatly enhances the flexibility and scalability of the optical sorting technology. This study provides an alternative scheme for the high-throughput particle sorting, which can be easily integrated into the optical sorting chips for applications in medical detection and drug delivery.
Read full abstract