Respiratory disorders are commonly regarded as complex disorders to diagnose due to their multi-factorial nature, encompassing the interplay between hereditary variables, comorbidities, environmental exposures, and therapies, among other contributing factors. This study presents a Clinical Decision Support System (CDSS) for the early detection of respiratory disorders using a one-dimensional convolutional neural network (1D-CNN) model. The ICBHI 2017 Breathing Sound Database, which contains samples of different breathing sounds, was used in this research. During pre-processing, audio clips were resampled to a uniform rate, and breathing cycles were segmented into individual instances of the lung sound. A One-Dimensional Convolutional Neural Network (1D-CNN) consisting of convolutional layers, max pooling layers, dropout layers, and fully connected layers, was designed to classify the processed clips into four categories: normal, crackles, wheezes, and combined crackles and wheezes. To address class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied to the training data. Hyperparameters were optimized using grid search with k-fold cross-validation. The model achieved an overall accuracy of 0.95, outperforming state-of-the-art methods. Particularly, the normal and crackles categories attained the highest F1-scores of 0.97 and 0.95, respectively. The model's robustness was further validated through 5-fold and 10-fold cross-validation experiments. This research highlighted an essential aspect of diagnosing lung sounds through artificial intelligence and utilized the 1D-CNN to classify lung sounds accurately. The proposed advancement of technology shall enable medical care practitioners to diagnose lung disorders in an improved manner, leading to better patient care.
Read full abstract