ABSTRACTAn unusual condition of the eye called diabetic retinopathy affects the human retina and is brought on by the blood's constant rise in insulin levels. Loss of vision is the result. Diabetic retinopathy can be improved by receiving an early diagnosis to prevent further damage. A cost‐effective method of accumulating medical treatments is through appropriate DR screening. In this work, deep learning framework is introduced for the accurate classification of retinal diseases. The proposed method processes retinal fundus images obtained from databases, addressing noise and artifacts through an improved median filter (ImMF). It leverages the UNet++ model for precise segmentation of the disease‐affected regions. UNet++ enhances feature extraction through cross‐stage connections, improving segmentation results. The segmented images are then fed as input to the improved gannet optimization‐based capsule DenseNet (IG‐CDNet) for retinal disease classification. The hybrid capsule DenseNet (CDNet) classifies disease and is optimized using the improved gannet optimization algorithm to boost classification accuracy. Finally, the accuracy and dice score values achieved are 0.9917 and 0.9652 on the APTOS‐2019 dataset.
Read full abstract