BackgroundPrevious studies have revealed structural brain abnormalities in individuals with depression, but the causal relationship between depression and brain structure remains unclear. MethodsA genetic correlation analysis was conducted using summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 1,265 brain structural imaging-derived phenotypes (IDPs, N = 33,224). Subsequently, a bidirectional two-sample Mendelian Randomization (MR) approach was employed to explore the causal relationships between depression and the IDPs that showed genetic correlations with depression. The main MR results were obtained using the inverse variance weighted (IVW) method, and other MR methods were further employed to ensure the reliability of the findings. ResultsNinety structural IDPs were identified as being genetically correlated with depression and were included in the MR analyses. The IVW MR results indicated that reductions in the volume of several brain regions, including the bilateral subcallosal cortex, right medial orbitofrontal cortex, and right middle-posterior part of the cingulate cortex, were causally linked to an increased risk of depression. Additionally, decreases in surface area of the right middle temporal visual area, right middle temporal cortex, right inferior temporal cortex, and right middle-posterior part of the cingulate cortex were causally associated with a heightened risk of depression. Validation and sensitivity analyses supported the robustness of these findings. However, no evidence was found for a causal effect of depression on structural IDPs. ConclusionsOur findings reveal the causal influence of specific brain structures on depression, providing evidence to consider brain structural changes in the etiology and treatment of depression.