Most neuroscientists measure neuronal activity in the brain to predict or explore the contribution of neurons to physiological/pathological functions of the brain. For example, if an increase in neuronal activity is detected in one brain region by peripheral noxious stimuli, we call this area the pain region or pain matrix. In the case of activity detected during conscious processes, such as placebo treatment, we label these regions as responsible for the placebo treatment. Due to limited access to the conscious brain and the reductionist nature of most modern neuroscience, we are all reluctant to explore more sophisticated hypotheses. Few studies have performed experiments at neuronal network levels. Like other higher order brain functions, the investigation into the neuronal mechanisms of placebo analgesia is proving to be difficult for clinicians and basic researchers. For example, there are individual differences in the response to placebos, called responders and non-responders. Certain populations of individuals show a significantly greater response to placebos than others. Evidence for environmental and social impacts on brain development is increasing; therefore, individual differences in higher order brain functions such as placebo analgesia is expected. Levine and colleagues (1978) performed a classic study on placebo analgesia [1]. Their hypothesis is based on the discovery of endogenous opioid peptides in the central nervous system. Placebo analgesia in patients was blocked by naloxone, an opioid receptor antagonist. These experiments indicate that the endogenous analgesia systems are likely to be activated during placebo analgesia, possibly at different levels of the central nervous system.