AbstractMany existing research focuses on the differences or performance comparisons between single‐atom or small‐sized nanocluster catalysts, but there is a lack of comprehensive research on the coupling relationship between the structure and activity and the mechanism of synergy. This study investigates the combined catalytic potential of cobalt single atoms (SAs) and nanoclusters (NCs) for enhanced peroxymonosulfate (PMS) activation to degrade norfloxacin (NFX). A novel CoSAs‐NCs/CN/TiO2 catalyst is synthesized, featuring cobalt SAs and NCs uniformly dispersed on the carbon film wrapping TiO2, and the degradation efficiency of the NFX solution is almost completely degraded, with a mineralization rate of 76.35%. Density functional theory (DFT) calculations indicate that the synergistic interaction between cobalt SAs and NCs promotes more efficient PMS adsorption and activation and significantly reduces the activation energy barrier, which enhances electron transfer and increases reactive oxygen species (ROS) generation. This research highlights the robust and versatile nature of this novel catalyst system in addressing various contaminants. This study elucidates the activation mechanism of catalysts, providing new ideas for advanced oxidation processes (AOPs) in environmental remediation, linking the structure and performance of catalysts, and emphasizes the practicality and importance of the CoSAs‐NCs/CN/TiO2 catalyst in effectively and long‐term remediation of water pollutants.