Monitoring systems of automated production lines requires high accuracy and processing speed of acquired data. Nowadays digital twin technologies are rapidly developing as part of Industry 4.0. Digital twin is a virtual representation of a physical system that mimics the behaviour of a real object, and is used in real-time control, monitoring and disturbance prediction, without influence on a real object. Digital twin is being used in many fields of application such as: healthcare, manufacturing, education, city development, etc. Nonetheless, despite the rising popularity of digital twin researches, there is no basic approach to digital twin synthesis. Mostly, in state of the art articles, systems with known parameters are considered. In this paper, approach to development of digital twin, based on internal model for multi-link mechanisms with unknown motion parameters, is presented. Described approach intended to ease the task of production line monitoring and extend digital twin technology application field. In this article adaptive controller design, based on internal model, is presented, theoretical explanations of design process are provided, and application of the control algorithm in the task of multi-link mechanism motion trajectory parameters estimation is described. In this work the experimental synthesis of digital twin for Kuka youBot manipulator based on presented approach in real time is described. Adaptive motion parameters estimation was made for two links of the manipulator for the sake of confirmation of presented approach usage in the task of digital twin for systems with unknown parameters. Motion trajectory parameters of the robot links were defined manually with the use of chaotic generators to estimate the accuracy of the adaptive control system. This approach was used in order to calculate the error of reference tracking by comparing the control signal for digital twin with the reference exogenous input for manipulator links. As the results of the experiment, the graphs of the error reference tracking for both links are presented. As the goal of the experiment, the convergence of reference tracking error to the field [–0.005, 0.005] radian was set, and as can be seen from graphs this goal was achieved. There is a small disturbance of the error convergence on the graphs within the desired field which was caused by noised measurements and delays of the chosen modelling environment real-time simulations. In the conclusion of this paper, further work to reduce the influence of mentioned causes is described. The results of this paper can be used in further digital twin technology researches. Presented approach can be implemented in robots remote control tasks, production lines technical condition monitoring and in general motion trajectory parameters estimation tasks for multi-link mechanisms