The highly selective 5-HT1A serotonin receptor "biased" agonists NLX-101 and NLX-204 display, like ketamine, potent and efficacious rapid-acting antidepressant (RAAD) activity in the rat chronic mild stress (CMS) model with systemic (i.p.) administration. They rapidly (within 1 day) reverse anhedonia (i.e., CMS-induced sucrose consumption deficit), attenuate working memory deficit (novel object recognition: NOR), and decrease anxiety behavior in the elevated-plus maze (EPM). Here, we sought to explore the contribution of prefrontal cortex (PFC) 5-HT1A receptor activation in the RAAD activity of NLX compounds. In male Wistar rats, unilateral PFC microinjections of NLX-204 and NLX-101 (16 µg), like ketamine (10 µg), reproduced the effects of their systemic administration: they reversed CMS-induced sucrose consumption deficit, attenuated anxiety (EPM), and reduced working memory deficits (NOR). In addition, unilateral PFC microinjections of the selective 5-HT1A antagonist, WAY-100,635 (2 µg), attenuated the beneficial effects of systemic NLX-204 and NLX-101 (0.16 mg/kg i.p.) in the sucrose intake and NOR models, indicating that these compounds exert their RAAD activity specifically through activation of PFC 5-HT1A receptors. These data indicate that 5-HT1A receptor biased agonists share with ketamine a common neuroanatomical site for RAAD activity, which can be obtained not only by targeting glutamatergic/NMDA neurotransmission (ketamine's primary mechanism of action) but also by activating 5-HT1A receptors, as is the case for the NLX compounds. The present observations also reinforce the notion that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve RAAD effects, with additional benefits against cognitive deficits and anxiety in depressed patients, without ketamine's troublesome side effects.