Abstract
Major Depressive Disorder (MDD) is a highly debilitating disorder characterized by a persistent feeling of sadness and anhedonia. Traditional antidepressants have a delayed onset of action and lack of efficacy in up to one third of patients, leading to treatment resistant depression (TRD). Recent years have witnessed a revolutionary treatment of TRD with the introduction of the fast-acting antidepressant ketamine. However, ketamine's mechanisms of action are still poorly understood. Here, we used the chronic mild stress animal model of depression on male rats to investigate the involvement of neurotrophic signaling pathways in stress vulnerability/resilience and fast antidepressant response/non-response to acute subanesthetic ketamine. We performed our analysis on both the hippocampus and the prefrontal cortex, two brain areas implicated in stress-related disorders, considering different subcellular fractions. We measured the activation by phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), glycogen synthase kinase-3 beta (GSK3 β), mammalian target of rapamycin (mTOR), and eukaryotic elongation factor 2 (eEF2), key effectors in the regulation of neuroplasticity and glutamatergic transmission which were previously associated to ketamine's fast antidepressant effect. We showed here for the first time that both stress and ketamine induced brain area and subcellular fraction specific changes in these pathways. Our study represents the first attempt to identify molecular mechanisms underlying the response/non-response to ketamine in an animal model of depression. This approach could give a crucial contribution to the study of etiopathogenetic mechanisms as well as to the identification of novel targets for the development of innovative therapeutic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Neuro-Psychopharmacology and Biological Psychiatry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.