Abstract

From clinical studies it is known that recurrent depressive episodes associate with a reduced hippocampal volume. Conversely, preclinical studies have shown that chronic antidepressant treatment increases hippocampal neurogenesis. Consequently, it has been suggested that a deficit in hippocampal neurogenesis is implicated in the pathophysiology of depression. To study a potential correlation between recovery and hippocampal cytogenesis, we established the chronic mild stress (CMS) rat model of depression. When rats are subjected to CMS, several depressive symptoms develop, including the major symptom anhedonia. Rats were exposed to stress for 2 weeks and subsequently to stress in combination with antidepressant treatment for 4 consecutive weeks. The behavioral deficit measured in anhedonic animals is a reduced intake of a sucrose solution. Prior to perfusion animals were injected with bromodeoxyuridine (BrdU), a marker of proliferating cells. Brains were sectioned horizontally and newborn cells positive for BrdU were counted in the dentate gyrus and tracked in a dorsoventral direction.CMS significantly decreased sucrose consumption and cytogenesis in the ventral part of the hippocampal formation. During exposure to the antidepressant escitalopram, given as intraperitoneally dosages of either 5 or 10 mg/kg/day, animals distributed in a bimodal fashion into a group, which recovered (increase in sucrose consumption), and a subgroup, which refracted treatment (no increase in sucrose consumption). Chronic treatment with escitalopram reversed the CMS-induced decrease in cytogenesis in the dentate gyrus of the ventral hippocampal formation, but in recovered animals only. Our data show a correlation between recovery from anhedonia, as measured by cessation of behavioral deficits in the CMS model, and an increase in cytogenesis in the dentate gyrus of the ventral hippocampal formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.