Alcoholic gastric ulcer is a common acute gastric injury disease. The drugs currently used in clinical practice not only cannot fundamentally treat gastric injury, but also have serious side effects. There is an urgent demand for the discovery of a mild drug to treat alcoholic gastric ulcers. Herein, the green carbon dots derived from charred Atractylodes macrocephala (CAM-CDs) were acquired and have been proven to be safe and effective in alleviating alcoholic gastric ulcers at an inhibition rate up to 60%. CAM-CDs can markedly attenuate the gastric mucosa damage such as mucosal defect, bleeding and inflammatory cell infiltration by histopathological examination. Serum and tissue inflammatory cytokine measurements, as well as immunohistochemistry results, indicate that its mechanism of gastric mucosal protection may involve the reduction of IL-1β and TNF-α by regulating inflammatory signaling pathway of the NF-κB/NLRP3 axis, as well as elevation of IL-10 levels. CAM-CDs also can reduce oxidative stress markers (MDA), increase PGE2 and mucin secretion (MUC5AC), and it simultaneously exerts slight inhibition of hydrogen potassium ATPase and pepsin activity to protect gastric mucosa, as well as increases the microbial diversity and regulates species composition of gut microbiota in rats with gastric ulcer. Our work provides a new perspective on utilizing carbon-based nanomaterials in the development of new mild drugs.
Read full abstract