Capacitively coupled plasma (CCP) tools utilized for plasma etching of dielectric features utilize large amounts of power for processing. As a result, neutral gas heats up significantly during processing. The resulting gas density variations across the reactor can affect reaction rates, radical densities, plasma characteristics and uniformity within the reactor. In this paper, results from a two-dimensional computational investigation of an Ar/CF4 CCP discharge incorporating an energy equation solution for all ions and neutrals are discussed. The dominant neutral gas heating process is identified to be elastic collisions with ions while conduction is found to be the major mechanism of heat transport. Some species such as F and CF3 demonstrate higher temperatures than the feedstock gases owing to additional heating via charge-exchange reactions and/or Franck–Condon heating. Typical process parameters such as pressure, frequency of excitation, power and gas composition are varied to investigate their impact on gas temperature. At higher excitation frequency and/or pressure, increased elastic collisions with ions lead to greater heat generation. The heat generated per molecule of the radicals, however, decreases with increase in pressure leading to a decrease in gas temperature. The increase in neutral collision frequencies with pressure also results in the decrease in temperature difference between species in the plasma. As CF4 fraction increases, both the elastic collision cross-section and Franck–Condon heating sources increase, leading to higher gas temperatures.
Read full abstract